Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
PLoS One ; 19(4): e0299987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564611

RESUMO

This study aimed to investigate AMR profiles of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from Nile tilapia (Oreochromis spp.) (n = 276) purchased from fresh markets and supermarkets in Bangkok, Thailand. A sample of tilapia was divided into three parts: fish intestine (n = 276), fish meat (n = 276), and liver and kidney (n = 276). The occurrence of A. hydrophila, Salmonella, and V. cholerae was 3.1%, 7.4%, and 8.5%, respectively. A high prevalence of these pathogenic bacteria was observed in fresh market tilapia compared to those from supermarkets (p < 0.05). The predominant Salmonella serovars were Paratyphi B (6.4%), followed by Escanaba (5.7%), and Saintpaul (5.7%). All isolates tested positive for the virulence genes of A. hydrophila (aero and hly), Salmonella (invA), and V. cholerae (hlyA). A. hydrophila (65.4%), Salmonella (31.2%), and V. cholerae (2.9%) showed multidrug resistant isolates. All A. hydrophila isolates (n = 26) exhibited resistant to ampicillin (100.0%) and florfenicol (100.0%), and often carried sul1 (53.8%) and tetA (50.0%). Salmonella isolates were primarily resistant to ampicillin (36.9%), with a high incidence of blaTEM (26.2%) and qnrS (25.5%). For V. cholerae isolates, resistance was observed against ampicillin (48.6%), and they commonly carried qnrS (24.3%) and tetA (22.9%). To identify mutations in the quinolone resistance determining regions (QRDRs), a single C248A point mutation of C248A (Ser-83-Tyr) in the gyrA region was identified in six out of seven isolates of Salmonella isolates. This study highlighted the presence of antimicrobial-resistant pathogenic bacteria in Nile tilapia at a selling point. It is important to rigorously implement strategies for AMR control and prevention.


Assuntos
Ciclídeos , Doenças Transmitidas por Alimentos , Animais , Antibacterianos/farmacologia , Ciclídeos/microbiologia , Farmacorresistência Bacteriana/genética , Tailândia/epidemiologia , Ampicilina , Aeromonas hydrophila/genética , Salmonella , Doenças Transmitidas por Alimentos/epidemiologia
2.
PLoS One ; 19(3): e0297979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551906

RESUMO

Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila.


Assuntos
Aeromonas , Peixes-Gato , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/genética , Filogenia , Paquistão , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Peixes-Gato/genética , Aeromonas/genética , Infecções por Bactérias Gram-Negativas/microbiologia
3.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441470

RESUMO

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lactococcus lactis , Animais , Humanos , Peixe-Zebra , Aeromonas hydrophila/genética , Lactococcus lactis/genética , Baço , Antibacterianos , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Peixes/microbiologia
4.
Antimicrob Resist Infect Control ; 13(1): 28, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433212

RESUMO

BACKGROUND: Aeromonas hydrophila infections can cause gastrointestinal symptoms such as diarrhea; however, deep infections are rarely reported. Outbreaks of A. hydrophila are reported more frequently in fish, poultry, and snakes than in humans. This study aimed to track clonal relatedness of deep infections caused by A. hydrophila using whole genome sequencing (WGS). METHODS: We collected three isolates of A. hydrophila in July 19 to August 29, 2019, from patients that underwent spine surgery. Accurate species identification was performed using whole-genome average nucleotide identity (ANI). Antimicrobial susceptibility testing was performed using a VITEK 2 automated AST-N334 Gram-negative susceptibility card system. Antimicrobial resistance and virulence genes were identified using the Comprehensive Antibiotic Resistance Database and Virulence Factor Database VFanalyzer. RESULTS: All three isolates were identified as A. hydrophila based on ANI and multilocus sequence typing analysis revealed that A. hydrophila belonged to a novel sequence type (ST1172). All three isolates were susceptible to amikacin and levofloxacin; however, they were resistant to piperacillin/tazobactam, ceftriaxone, cefuroxime, cefoxitin, and imipenem. Isolate 19W05620 (patient 3) showed increased ceftazidime resistance (minimum inhibitory concentration ≥ 64 µg/mL). All three isolates possessed the same chromosomally encoded ß-lactamases, including blaOXA-724 (ß-lactamase), imiH (metallo-ß-lactamase), and blaMOX-13 (AmpC) in plasmids. CONCLUSIONS: Our study validated the transmission of a novel carbapenem-resistant A. hydrophila sequence type (ST1172) in patients that underwent spine surgery. Control measures should be developed to prevent dissemination of A. hydrophila in the hospital setting.


Assuntos
Aeromonas hydrophila , Anti-Infecciosos , Animais , Humanos , Aeromonas hydrophila/genética , Amicacina , Carbapenêmicos , beta-Lactamases
5.
BMC Vet Res ; 20(1): 84, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459543

RESUMO

In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.


Assuntos
Aeromonas hydrophila , Tilápia , Animais , Aeromonas hydrophila/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos
6.
Front Cell Infect Microbiol ; 14: 1348973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371296

RESUMO

Introduction: Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods: In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results: S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion: The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.


Assuntos
Aeromonas , Staphylococcus aureus Resistente à Meticilina , Smegmamorpha , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Aeromonas hydrophila/genética , Estudos Transversais , Antibacterianos/farmacologia , Peixes , Amoxicilina , Fatores de Risco , Água , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia
7.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360192

RESUMO

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva/microbiologia , Astacoidea , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Antioxidantes , Dieta , Expressão Gênica , Antibacterianos
8.
Biofouling ; 40(1): 64-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38373897

RESUMO

Aeromonas hydrophila, a Gram-negative zoonotic bacterium, causes high mortality in fish farming and immunocompromised patients. This study aimed to extract methyl gallate (MG) from the flowers of Camellia nitidissima Chi and evaluate its potential as a quorum sensing inhibitor (QSI) against Aeromonas hydrophila SHAe 115. MG reduced QS-associated virulence factors, including hemolysis, protease, and lipase, while impairing swimming motility and biofilm formation. Additionally, MG down-regulated positive regulatory genes (ahyR, fleQ) and up-regulated negative regulators (litR, fleN). This highlights MG's promise as a potent QSI for A. hydrophila SHAe 115, advancing strategies against infections in aquaculture and human health.


Assuntos
Biofilmes , Ácido Gálico/análogos & derivados , Percepção de Quorum , Animais , Humanos , Percepção de Quorum/genética , Virulência/genética , Aeromonas hydrophila/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética
9.
Appl Microbiol Biotechnol ; 108(1): 67, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183487

RESUMO

Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.


Assuntos
Lonicera , Animais , Aeromonas hydrophila/genética , Ácido Clorogênico , Proteínas Hemolisinas , Répteis , Antibacterianos/farmacologia , Biofilmes
10.
Int J Biol Macromol ; 261(Pt 1): 129676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272420

RESUMO

Aeromonas hydrophila is a serious human and animal co-pathogenic bacterium. Flagellum, a key virulence factor, is vital for bacterium tissue colonization and invasion. flgL is a crucial gene involved in the composition of flagellum. However, the impact of flgL on virulence is not yet clear. In this study, we constructed a stable mutant strain (△flgL-AH) using homologous recombination. The results of the attack experiments indicated a significant decrease in the virulence of △flgL-AH. The biological properties analysis revealed a significant decline in swimming ability and biofilm formation capacity in △flgL-AH and the transmission electron microscope results showed that the ∆flgL-AH strain did not have a flagellar structure. Moreover, a significant decrease in the adhesion capacity of ∆flgL-AH was found using absolute fluorescence quantitative polymerase chain reaction (PCR). The quantitative real-time PCR results showed that the expression of omp and the eight flagellum-related genes were down-regulated. In summary, flgL mutation leads to a reduction in pathogenicity possibly via decreasing the swimming ability, biofilm formation capacity and adhesion capacity, these changes might result from the down expression of omp and flagellar-related genes.


Assuntos
Aeromonas hydrophila , Natação , Animais , Humanos , Virulência/genética , Aeromonas hydrophila/genética , Biofilmes , Mutação , Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Fish Shellfish Immunol ; 144: 109247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006905

RESUMO

Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin ß12, hepcidin, leap 2, ß-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Transcriptoma , Hepcidinas/genética , Hepcidinas/metabolismo , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Peixes/genética , Proteínas de Peixes/química , Galectinas/genética
12.
Am J Infect Control ; 52(3): 337-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37778710

RESUMO

BACKGROUND: Aquatic opportunistic pathogen Aeromonas hydrophila, known to persist in low-nutrient chlorinated waters, can cause life-threatening infections. Two intensive care units experienced a cluster of Aeromonas infections following outdoor temperature spikes coinciding with recurrent plumbing issues, with fatalities due to severe underlying comorbidities co-occurring with extensively-drug resistant (XDR) Aeromonas. METHODS: We investigated this cluster using whole genome sequencing to assess genetic relatedness of isolates and identify antimicrobial resistance determinants. Three A. hydrophila were isolated from patients staying in or adjacent to rooms with plumbing issues during or immediately after periods of elevated outdoor temperatures. Sinks and faucets were swabbed for culture. RESULTS: All A. hydrophila clinical isolates exhibited carbapenem resistance but were not genetically related. Diverse resistance determinants corresponding to extensively-drug resistant were found, including co-occurring KPC-3 and VIM-2, OXA-232, and chromosomal CphA-like carbapenemase genes, contributing to major treatment challenges. All 3 patients were treated with multiple antibiotic regimens to overcome various carbapenemase classes and expired due to underlying comorbidities. Environmental culture yielded no Aeromonas. CONCLUSIONS: While the investigation revealed no singular source of contamination, it supports a possible link between plumbing issues, elevated outdoor temperatures and incidence of nosocomial Aeromonas infections. The diversity of carbapenemase genes detected in these wastewater-derived Aeromonas warrants heightened infection prevention precautions during periods of plumbing problems especially with heat waves.


Assuntos
Aeromonas , Proteínas de Bactérias , Infecção Hospitalar , Humanos , Aeromonas hydrophila/genética , Engenharia Sanitária , Infecção Hospitalar/epidemiologia , Temperatura Alta , beta-Lactamases/genética , Aeromonas/genética , Antibacterianos , Testes de Sensibilidade Microbiana
13.
Braz. j. biol ; 84: e254816, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355894

RESUMO

Abstract Pakistan is an agricultural country and fisheries play a very important role in the economic development of the country. Different diseases are prevalent in Pakistani fish but information related to the causative agents is not well-known. Keeping in view the significance of bacterial pathogens as the causative agents of multiple fish diseases, the present study was conducted for identification, characterization and analysis of virulence genes of Aeromonas spp. isolated from diseased fishes. A total of fifty fish samples having multiple clinical indications were collected from different fish farms of district Kasur, Punjab Pakistan. For isolation of Aeromonas spp. samples were enriched and inoculated on Aeromonas isolation medium. Isolates were identified and characterized by different biochemical tests, Analytical Profile Index (API) 20E kit and Polymerase Chain Reaction (PCR) assays. All isolates were screened for three putative virulence genes including aerolysin (aer), haemolysin (hyl) and heat labile cytotonic enterotoxin (alt). Seven isolates of Aeromonas (A.) hydrophila were retrieved and identified based on API 20E. These isolates were further confirmed as A. hydrophila on the basis of PCR assays. Three isolates were detected positive for the presence of virulence genes (alt and hyl). Whereas aerolysin (aer) gene was not present in any of A. hydrophila isolates. The present study confirmed A. hydrophila as the causative agent of epizootic ulcerative syndrome and motile Aeromonas septicemia in fish farms of district Kasur, Punjab Pakistan. Moreover, detection of two virulence genes (alt and hyl) in A. hydrophila isolates is a threat for fish consumers of study area.


Resumo O Paquistão é um país agrícola, onde a pesca desempenha um papel muito importante para o desenvolvimento econômico. Diferentes doenças são prevalentes em peixes do Paquistão, mas as informações relacionadas aos agentes causadores não são bem conhecidas. Tendo em vista a importância dos patógenos bacterianos como agentes causadores de múltiplas doenças em peixes, o presente estudo foi conduzido para identificação, caracterização e análise de genes de virulência de isolados de Aeromonas spp. de peixes doentes. Foram coletadas 50 amostras de peixes com múltiplas indicações clínicas em diferentes fazendas do distrito de Kasur, Punjab, Paquistão. Para isolar Aeromonas spp., as amostras foram enriquecidas e inoculadas em meio de isolamento. Os isolados foram identificados e caracterizados por diferentes testes bioquímicos, kit Analytical Profile Index (API) 20E, e ensaios de reação em cadeia da polimerase (PCR). Todos os isolados foram selecionados para três genes de virulência putativos, incluindo aerolisina (aer), hemolisina (hyl) e enterotoxina citotônica termolábil (alt). Sete isolados de Aeromonas hydrophila foram recuperados e identificados com base no API 20E. Esses isolados foram posteriormente confirmados como A. hydrophila de acordo com ensaios de PCR. Três isolados indicaram a presença de genes de virulência (alt e hyl), enquanto o gene aerolisina (aer) não esteve presente em nenhum dos isolados de A. hydrophila. O presente estudo confirmou A. hydrophila como o agente causador da síndrome ulcerativa epizoótica e septicemia móvel por Aeromonas em fazendas de peixes, no distrito de Kasur, Punjab, Paquistão. Além disso, a detecção de dois genes de virulência (alt e hyl) em isolados de A. hydrophila é uma ameaça para os consumidores de peixes da área de estudo.


Assuntos
Animais , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/epidemiologia , Aeromonas/genética , Paquistão , Aeromonas hydrophila/genética , Enterotoxinas/genética , Peixes
14.
Antonie Van Leeuwenhoek ; 117(1): 4, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153571

RESUMO

Naturally infected Channa punctata exhibiting bacterial septicemic syndrome including ulcerations along with mortality records were collected from a fish farm in Assam during winter season (early November 2020 to early January 2021). The moribund fishes were subjected for bacterial isolation followed by identification of the bacteria. Two dominant emerging bacterial pathogens were identified as Aeromonas veronii (isolate ZooGURD-01) and Aeromonas hydrophila (isolate ZooGURD-05) by standard biochemical characterization and 16S rRNA and rpo B gene amplification. Re-infection experiments of both the bacterial isolates in healthy disease-free C. punctata showed similar symptoms to that of natural infection thus confirming their virulence. The LD50 calculated during challenge test for both the isolates ZooGURD-01 and ZooGURD-05 found to be pathogenic at 2.6 × 104 and 1.6 × 104 CFU/fish respectively. Further PCR amplification of specific virulent genes (aerolysin, hemolysin and enterotoxin) confirmed pathogenicity for both isolates. Histopathological examinations of liver and kidney in re-infection experiments showed prominent changes supporting bacterial septicaemia. Antibiotic sensitivity pattern showed that the isolates ZooGURD-01 and ZooGURD-05 were sensitive to 22 and 19 out of 25 antimicrobials respectively. The present study was the first report on the mortality of farmed C. punctata associated with natural infection caused by A. veronii and A. hydrophila with no record of pathogenicity of A. veronii in C. punctata.


Assuntos
Aeromonas hydrophila , 60455 , Animais , Aeromonas hydrophila/genética , Aeromonas veronii/genética , RNA Ribossômico 16S/genética , Reinfecção , Peixes
15.
Front Cell Infect Microbiol ; 13: 1271448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868352

RESUMO

Background: Aeromonas hydrophila is an important pathogen that mainly harms aquatic animals and exhibits resistance to a variety of antibiotics. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on the virulence factors of A.hydrophila and its impact on adhesion, invasion, and cytotoxicity in Caco-2 cells. The potential mechanism of antibacterial activity of EGCG was investigated by transcriptomic analysis. Results: EGCG not only inhibited the production of biofilm, hemolytic activity, motility, and protease activity of A.hydrophila, but also reduced its adhesion, invasion, and cytotoxicity in Caco-2 cells. Transcriptomic analysis indicated that the antimicrobial activity of EGCG may be achieved by weakening the chemotaxis and stress response of the bacteria, as well as inhibiting the TonB system. Animal studies demonstrated that EGCG can significantly improve the survival rate and organs damage of zebrafish infected with A.hydrophila. Conclusion: EGCG would be a potential alternative drug for the prevention and treatment of A. hydrophila infections by anti-virulence mechanism.


Assuntos
Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas , Animais , Humanos , Aeromonas hydrophila/genética , Peixe-Zebra/microbiologia , Células CACO-2 , Transcriptoma , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia
16.
Virology ; 588: 109887, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774603

RESUMO

Aeromonas hydrophila, a Gram-negative pathogenic bacterium, is responsible for huge economic losses in aquaculture. In this study, we evaluated the efficacy of bacteriophage AHPMCC7 which was isolated by using A. hydrophila MTCC 1739 as a host. This bacteriophage exhibited 10 min latent period and burst size was 275. In liquid culture, bacteriophage AHPMCC7 could completely lyse A. hydrophila MTCC 1739 after 2 h. AHPMCC7 genome was 42,277 bp long with 58.9% G + C content. The genome consisted of 48 CDSs and no tRNA. The comparative genomic analyses clearly implied that AHPMCC7 might represent a novel species of the genus Aphunavirus under Autographiviridae family. Bacteriophage AHPMCC7 could survive at broad pH (3-10), temperature (4-37 °C), and salinity (0-40 ppt). In aquarium trial, AHPMCC7 could control A. hydrophila MTCC 1739 without affecting the survivability of Litopenaeus vannamei. Clearly, the bacteriophage AHPMCC7 might be used in shrimp aquaculture as a biocontrol agent.


Assuntos
Aeromonas , Bacteriófagos , Caudovirales , Aeromonas/genética , Aeromonas hydrophila/genética , Caudovirales/genética , Análise de Sequência
17.
BMC Vet Res ; 19(1): 120, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573362

RESUMO

BACKGROUND: Aeromonas hydrophila is a zoonotic bacterial pathogen that frequently causes disease and mass mortalities among cultured and feral fishes worldwide. In Ethiopia, A. hydrophila outbreak was reported in Sebeta fish ponds and in Lake Tana fishery. However, there is no to little information on the molecular, and phenotypical characteristics of A. hydrophila in Ethiopian fisheries. Therefore, a cross-sectional study was conducted from November 2020 to May 2021 in selected Ethiopian Rift valley lakes. RESULTS: A total of 140 samples were collected aseptically from fish (Muscle, Gill, Intestine, Spleen and Kidney) from fish landing sites, market and restaurants with purposive sampling methods. Aeromonas selective media (AMB), morphological and biochemical tests were used to isolate and identify A. hydrophila. Accordingly, the pathogen was isolated from 81 (60.45%) of samples. Among the isolates 92.59% expressed virulence trait through ß hemolysis on blood agar media with 5% sheep blood. Moreover, 54 strains (66.67%) were further confirmed with Real-Time PCR (qPCR) using ahaI gene specific primers and optimized protocol. The highest (68.51%) were detected from live fish, (24.07%) were from market fish and the lowest (7.4%%) were from ready-to-eat products. Antibiogram analysis was conducted on ten representative isolates. Accordingly, A. hydrophila isolates were susceptible to ciprofloxacin (100%), chloramphenicol (100%) and ceftriaxone (100%). However, all ten isolates were resistant to Amoxicillin and Penicillin. CONCLUSIONS: The study indicates A. hydrophila strains carrying virulence ahaI gene that were ß-hemolytic and resistant to antibiotics commonly used in human and veterinary medicine are circulating in the fishery. The detection of the pathogen in 140 of the sampled fish population is alarming for potential outbreaks and zoonosis. Therefore, further molecular epidemiology of the disease should be studied to establish potential inter host transmission and antibiotic resistance traits. Therefore, raising the public awareness on risk associated with consuming undercooked or raw fish meat is pertinent.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Doenças dos Ovinos , Humanos , Animais , Ovinos , Ciclídeos/microbiologia , Aeromonas hydrophila/genética , Lagos , Etiópia/epidemiologia , Estudos Transversais , Produtos Pesqueiros , Testes de Sensibilidade Microbiana/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
18.
J Microbiol Methods ; 211: 106782, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451347

RESUMO

Rapid and accurate detection of bacterial pathogens is critical in controlling disease outbreaks affecting farmed fish. The present study aimed to develop a novel serological diagnostic approach using nano­silver based Enzyme-linked immunosorbent assay (ELISA) for speedy detection of Aeromonas veronii infections in Nile tilapia. A. veronii isolates used in ELISA assays were recovered from moribund Nile tilapia during a disease outbreak in a private fish farm in Egypt. A. veronii isolates were identified based on alignment analysis of the gyrB and 16S rRNA gene sequences. A. veronii antisera used in ELISA assays were prepared in tilapia, and the bacterial antigens were formalin-killed. The cut-off values were 0.46 and 0.48 in traditional and nano-based ELISA. There were no cross-reactions with bacterial isolates (Aeromonas hydrophila, Aeromonas caviae, Aeromonas sobria, Pseudomonas fluorescens, and Vibrio vulnificus). The lowest antigen concentration that produced positive results after checkerboard titration in indirect-ELISA (i-ELISA) and dot ELISA was 15 µg and 250 ng of prepared antigen, respectively. Nano-ELISA and nano-based dot-ELISA antigen concentration was 10 µg and 100 ng, respectively. Sera concentration was 1:100 in indirect-ELISA and dot-ELISA, while it was 1:50 in nano-based ELISA and nano dot-ELISA. The i-ELISA successfully detected anti-Aeromonas IgG antibodies with 83.33% sensitivity and 66.67% specificity, while in the dot-ELISA, the sensitivity and specificity were 83.33% and 100%, respectively. Nano dot-ELISA had 100% sensitivity, specificity, and accuracy. Nano dot-ELISA assays have higher specificity, sensitivity, and accuracy than traditional ELISAs in detecting A. veronii. Further studies are needed to develop a rapid test kit for on-site field diagnosis.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/genética , RNA Ribossômico 16S/genética , Prata , Aeromonas hydrophila/genética , Ensaio de Imunoadsorção Enzimática , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia
19.
Fish Shellfish Immunol ; 140: 108945, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451525

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an adapter protein that triggers downstream cascades mediated by both TNFR and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF6 is involved in various biological processes, including innate and adaptive immunity. In the present study, a homolog of TRAF6 from Macrobrachium rosenbergii (MrTRAF6) was identified and characterized. The full-length cDNA of MrTRAF6 consisted of 2,114 nucleotides with an open reading frame (ORF) of 1,695 nucleotides encoding a 564-amino acid protein that contained a conserved TRAF family motif including two RING-type zinc fingers and a C-terminal meprin and TRAF homology (MATH) domain. The putative amino sequence of MrTRAF6 shared 45.5-97.3% identity with TRAF6s from other crustacean species with the highest identity to Macrobrachium nipponense TRAF6. Phylogenetic analysis revealed that MrTRAF6 was closely related to TRAF6 of invertebrates and clustered with crustaceans. According to gene expression analysis, the MrTRAF6 transcript demonstrated broad expression in all tissues tested, with the highest expression level in gill and the lowest in muscle tissues. Upon immune challenge with Aeromonas hydrophila, significant upregulation of MrTRAF6 expression was found in the gill, hepatopancreas, hemocyte, and muscle. Furthermore, an RNA interference assay showed that silencing MrTRAF6 by dsRNA could reduce the expression of mannose-binding lectin (MBL) and crustin, but no significant change was detected in anti-lipopolysaccharide factor 5 (ALF5) levels. In addition, the cumulative mortality rate of MrTRAF6-silenced M. rosenbergii was significantly increased after A. hydrophila infection. These findings indicated that MrTRAF6 is involved in antibacterial activity and plays a critical role in the innate immune response of M. rosenbergii.


Assuntos
Palaemonidae , Fator 6 Associado a Receptor de TNF , Animais , Sequência de Bases , Aeromonas hydrophila/genética , Sequência de Aminoácidos , Filogenia , Nucleotídeos/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Imunidade Inata/genética
20.
Carbohydr Res ; 531: 108896, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437416

RESUMO

The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.


Assuntos
Aeromonas , Carpas , Oncorhynchus mykiss , Animais , Antígenos O/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/química , Sorogrupo , Polônia , Aeromonas/genética , Aeromonas/química , Aquicultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...